matrix factorization을 이용한 추천시스템 간단한 이론과 구현예시
1. matrix factorization 사용자 * 아이템으로 구성된 하나의 행렬을 2개의 행렬로 분해하는 방법 사용자와 아이템이 각각 무엇인지는 모르겠지만 k개의 잠재요인(latent factor)으로 설명할 수 있다고 생각하고, (사용자 * 잠재요인) * (잠재요인 * 아이템)의 두 행렬의 곱으로 나타낼 수 있다는 것이다. 행렬 R은 M명의 사용자가 N개의 아이템에 대해 평가한 점수가 있는 행렬 M명의 사용자는 모든 아이템에 대해 평가하지는 않는다. 내가 소유한 아이템, 경험해본 아이템에 대해서는 평가할 수 있어도(혹은 평가하지 않고) 경험해보지 않은 아이템에 평가하지는 않는다(거짓으로 할수도 있겠지만..) 그래서 R은 대부분의 아이템이 NULL인 sparse matrix이다. 이러한 행렬 ..